Measuring Rate of Globular Cluster Evaporation using Particle Mesh Models

Nick Stern
Brown University Physics Department
(Dated: May 11, 2017)

In the following report I use a Particle-Particle Particle-Mesh (P3M) algorithm to model a cluster
of stars under the influence of a gravitational field, and measure the rate at which the cluster evap-
orates as a function of the initial mass and velocity distribution. Results show that the evaporation
time decreases with an increase in the average velocity of the globular cluster, though there was not a
significant correlation between the evaporation time and the mass distribution of the globular cluster.

I. INTRODUCTION

Globular clusters were formed very early on in the his-
tory of our galaxy, typically found to be around 13 bil-
lion years in age, with a variation of less than 5 billion
years.[1] Sizes of globular clusters range from about 10%
to 107 stars, and the tidal radii of clusters (distance at
which the stars are less influenced by the cluster than
they are by another system) tend to be on the order of
10 kpc. It is unlikely to find any that are much smaller
than that because of a process known as ”globular cluster
evaporation.” Globular cluster evaporation is the process
of ejecting stars due to standard gravitational mechan-
ics and stellar interactions within the globular mass. It
is the aim of this research paper to model, and quantify
this phenomenon. Specifically, in this research paper we
seek to answer the following question: how does the rate
at which stars get ejected from a globular cluster depend
on the initial mass and velocity distributions within the
cluster? We seek to understand the relationship between
stellar mass, speed, and the evaporation rate.

Celestial mechanics does a fantastic job of producing
a fully-formed, analytical solution to a two body orbit.
However, our solar system alone is occupied by millions
of asteroids and planetary objects of comparable mass,
all exerting gravitational forces upon one another in a
way that is too intricate for analytical solutions alone to
decipher. Therefore, numerical methods are essential to
modeling and simulating celestial interactions. Restrict-
ing our view to only the most massive objects within
our solar system, it is feasible to treat each object indi-
vidually and calculate the gravitational force one object
exerts on each of the N-1 remaining objects. However,
this approach quickly gets out of hand as we relax our
mass constraint, or increase our point of view to the size
of a galaxy. When millions or even billions of objects
are interacting with each other gravitationally, it is no
longer feasible to treat each body individually, due to
limitations on computational power and time. To that
extent, a number of new algorithms have been developed
since the 1970’s to decrease the computational complex-
ity of N-body simulations from O(N?) to O(Nlog(N)).[2]
One of these algorithms, and the one that we shall make
use of in this research paper to study the dependence of
evaporation rate on stellar mass and velocity, is known
as the Particle-Mesh (PM) model, described in further

detail in the method section.

II. THEORY

It is important to first note that the dominant force
within Globular clusters is gravity, and therefore a sim-
ulation that examines stellar behavior in a gravitational
field alone is appropriate for our purposes. Additionally,
unless we are interested in super-massive objects, it is re-
liable to use a Newtonian model for gravity. The equation
that determines the strength of the gravitational field is
Poisson’s equation, depicted below:

V20(i) = 4nGp(T) (1)

There are three important sources of evaporation in
isolated clusters of stars. The first source comes from
the random distribution of velocities that stars can take
on, very similar to the Maxwell-Boltzmann distribution
of an ideal gas.

Number of
Molecules with
Energy

v

Kinetic Energy (E)

FIG. 1: The Maxwell-Boltzmann Distribution

As is shown in Figure 1, there is a tail to the Maxwell-
Boltzmann distribution at higher energies. Therefore,
stars within the cluster can obtain random velocities
greater than the escape velocity, and shoot out of the
gravitationally bound system. The second common
source of cluster evaporation is motivated by binary star
systems. In an open cluster, stellar interaction is gener-
ally not frequent enough to transfer energy effectively in
a way that can lead to offhand, excessively high veloci-
ties. Binary star systems, however, are able to transfer

energy effectively. The introduction of a third star pass-
ing by a binary system can lead to the passing of energy
to the third star, and propel it out of the cluster in a way
that a unitary star cannot. The third source of evapo-
ration comes from binary systems in which one of the
stars reaches the end of its life cycle and explodes into a
supernova.[3] This explosion is dramatic enough to give
its binary counterpart the velocity necessary to escape
the cluster. The preliminary simulation used in this re-
search paper looks exclusively at the first of these three
sources of globular cluster evaporation.

IIT. METHOD

As mentioned in the introduction, for N-body particle
simulations with higher and higher N, it becomes increas-
ingly difficult to use an algorithm that calculates forces
from all the particles on each other. This type of algo-
rithm is referred to as a Particle-Particle (PP) model, and
is very effective at smaller scales because of its greater
force resolution. In this research paper we intend to ex-
plore large scale interactions across many particles, and
therefore we make use of a Particle-Mesh model. The
process of the particle mesh model is outlined in the fol-
lowing stages. The first step to implementing the PM
algorithm is to implement a "mesh” or a grid that spans
the space of the simulation. The purpose of this mesh is
to capture and record the masses of nearby particles to
create a mass distribution. For our purposes, we gener-
ate a 3D cube and divide it into cells with nodes in the
center of each, as depicted in Figure 2 below:

Lattice Points

FIG. 2: 10x10x10 Example of Mesh Grid

Next, we initialize a series of particles with randomized
masses, initial positions, and initial velocities, as shown
in Figure 3. The sizes of the particles in the simulation
reflect their relative mass. We choose to initialize the
particles in a central region of the grid, to avoid getting
sucked into the periodic boundary, which shall be dis-
cussed later.

It is worth noting at this point that there are several
ways in which to interpolate the particle masses onto the

Particles

FIG. 3: 20 Particles Initialized in 10x10x10 Grid

grid. The simplest method, and the one used in this re-
search paper is the Nearest Grid-point (NGP) method,
whereby all of the particle’s mass is assigned to the near-
est grid point. The NGP method does come at a loss of
resolution, as it is a zero-order interpolation. Another
method, one that perhaps could be implemented in a
later version of the simulation, is known as the Cloud in
Cell (CIC) assignment. CIC assignment splits the parti-
cles mass among several adjacent grid points in three di-
mensions, and is equivalent to a first order interpolation.
The CIC algorithm is widely used in popular practice of
N-body simulations.

Once the particle masses have been interpolated into
the grid, we can use Equation 1 to back-solve for the
potential distribution. However, we must do so with a
method that is less complex than O(N?), and therefore
an improvement over the PP algorithm mentioned earlier.
To overcome this, the Particle-Mesh algorithm Fourier
transforms the Poisson equation, and solves for gravi-
tational potential in Fourier space, in accordance with
Ewald summation. This results in a decrease in com-
plexity from O(N?) to O(Nlog(N)) because of the low-
complexity Fast Fourier Transform (FFT) algorithm.[2]
The Poisson equation (continuous solution) in Fourier
space becomes:

_ —AnG

(k) = ——plk 2
|ka() (2)

—
Sy
~—

where the tilde’s indicate that ® and p are functions of
the wavenumber, k. With periodic boundary conditions
and a discrete Laplacian, the wavenumber is defined to
range from k = —nn/L to k = nxw/L, for ny, ng, ny and
Ly, Ly, L3, corresponding to each of the three dimen-
sions. n is referred to as the wavenumber index, and is
defined to be n = L/Ax, where Az in this case is the cell
width.

Once the gravitational potential distribution is solved
for in Fourier space, we can then inverse Fourier trans-
form it back to the spatial dimension. An example of the

potential distribution for a single point mass is plotted
in Figure 4.

Potential

FIG. 4: Potential distribution associated with a single
particle in the lower left hand corner of the a 5x5x5 grid.

With the potential distribution in real space obtained,
we can utilize the relationship between force and poten-
tial, Fyy (&) = —V®(Z), to solve for the force using a cen-
tralized finite difference numerical method. Once we have
a gravitational force vector associated with each node in
the mesh, interpolate that back to the particle using the
same interpolation scheme as before. It is imperative to
use the same interpolation scheme that was used to as-
sign mass to the mesh, so that the particles do not create
forces on themselves, thus disrupting Newton’s 3rd law.

Finally, we can obtain new positions and velocities for
the particles by using a leapfrog integration method with
the following ordinary differential equations:

i F,(®)
dat~ m
i
= =

where m in this case is the mass of the particle. Re-
peating this process an integration results in particle mo-
tion!

Periodic boundary conditions were imposed in the sit-
uation because although the system is considered in iso-
lation, it exists within a universe with a nonzero average
density. Simulations that do not use periodic boundary
conditions experience gravitational collapse toward the
center of the model, which results in improper density
perturbations, and erroneous results.[4]

In order to quantify the rate of ejecta from the globular
cluster, we may define the boundary of the cube to be the
point of no return, and keep a counter of how many stars
hit the edges of the cubic grid. We then record at what
time every star has exited the cube, which we denote to
be the complete evaporation of the system.

IV. RESULTS

In order to determine whether the potential falls off as
1/r as expected, in the same grid setup as Figure 4, a
slice along the x axis (y = 0, z = 0) was plotted against
the analytical result to yield Figure 5

Potential
—— Measured
Analytical
0.8 A
0.6
]
€
I
o
a 0.4 4
0.2
~—
0.0 T
0 1 2 3 4 5

FIG. 5: Measured potential along x slice vs. analytical
expectation. The graph is normalized.

The reason the measured potential curves up at larger
x is due to the periodic boundary conditions imposed on
the grid. Increasing the size of the grid leads to a conver-
gence to the proper analytical potential, as demonstrated
in Figure 6.

Potential

—— Measured
Analytical
0.8 \
0.6 |
s
t=]
€
2
L 0414
N ¥
0.0
T T T
0 1 2 3 4 5

X

FIG. 6: Measured potential along x slice vs. analytical
expectation with larger grid. The graph is normalized.

In order to determine the simulation was working cor-
rectly, we used the base case of analyzing the potential
distribution and gravitational field created by black hole
centered in our grid space. Figure 7 displays a color map
of the black hole grid potential. The potential is mostly
negative around the black hole, and is also spherically
symmetric, two properties that indicate our calculated
potential field is accurate.

An additional check to determine that the potential
field was correct was simply verifying that the inverse

Potential @ t = 0.00 0
| -250
[10
-500
li 8
te oz -750
o
'qn . t 4
5 o2 ~1000
|
)
e ~1250
10
/< 8
° <6 -1500
7
P 6 2 ty
-1750
x 8 150

FIG. 7: Color map of black hole grid potential

Fourier transform solution to Poisson’s equation was not
complex valued. Nontrivial complex values within the
potential distribution cannot be discarded, and visibly
change the way the particles move. Animating the simu-
lation in real time demonstrated that with complex po-
tentials, the stars within the globular cluster did not in-
teract, and diverged much faster than they did in accu-
rate potential. One further check that was done on the
potential distribution was to verify that the initial po-
tential distribution was propagated accurately through-
out the algorithm. By plotting potentials at various time
steps within our simulation, we were able to determine
that the potential distribution adjusted to particle mo-
tion correctly, and total particle mass was conserved.

Next, in order to ascertain whether the gravitational
vector field was calculated as expected, we created a
quiver plot of the vectors at each mesh point, and plotted
this over the potential distribution of our base case, the
black hole. To visualize results clearly, we implemented a
mask on the potential distribution and gravitational field,
blocking potentials below a magnitude of 100, and thus
isolating the potential values and field vectors within the
immediate vicinity of the black hole. These results are
plotted in Figure 8.

Potential @ t = 0.00 -200
—400
-600

2 -800
-1000
-1200
~1400

-1600

—-1800

FIG. 8: Overlaid color map and quiver plot of black
hole with mask threshold of 100.

As is shown in the quiver plot, all of the arrows point
inward towards the black hole, which indicates that the
gravitational field is calculated correctly, and follows ex-
pectation. This was also verified for distributions of mul-
tiple particles across various timescales, though the visu-
alizations lacked the clarity of the black hole base case.
The ultimate check to ensure that the results from the
simulation are accurate and trustworthy, was to animate
the globular cluster in real time, and watch to see that
the stars are responsive to changes in their initial posi-
tions, velocities, and masses, but most of all, to check
that the stars are responsive to each other. This was
tested successfully with various initial conditions

After performing extensive checks to ensure that the
simulation output made physical sense, we moved on to
calculating and plotting the evaporation time as a func-
tion of various velocity and mass distributions. We chose
to investigate this relationship by creating uniform, ran-
dom distributions of velocity and mass within specified
parameters, and varying the parameters with respect to
one another. For the purposes of our analyses, we chose
units such that Newton’s gravitational constant, G, is set
equal to 1. Since focus of the analysis is on the general
relationship between evaporation time, mass, and veloc-
ity, units won’t be specifically defined going forward. To
first test the evaporation time vs. velocity, we initialized
a particle distribution with the following properties:

Initial Parameters for Varying Velocity
Grid Size 10x10x10
Particles 5
Mass Range 1 <m <5
Position Range 3 <p <7
Initial Velocity Range d<v <1

We examined the evaporation time vs. velocity in two
ways. First, we kept the initial minimum velocity the
same, and increased the maximum velocity within the
randomized distribution by increments of v = .2, until it
reached a new maximum of v = 5.0. With each incre-
mental velocity, we ran our simulation five times for a
period of ¢ = 100 with a time-step of h = .05, recording
each evaporation time with the run. We took the mean
and standard deviation of the five evaporation time data
points per iteration, and plot the results in Figure 9.

Next, we varied the initial minimum velocity along
with the initial maximum velocity by increments of v = .2
until the maximum velocity reached v = 5.0 once again.
The rest of the procedure remained the same as before.
These results are plotted in Figure 10.

For comparing the evaporation time with the mass dis-
tribution, we used a very similar procedure with the fol-
lowing, slightly different initialization conditions:

Evaporation Time vs. Initial Velocity Distribution

—— Base Velocity: 0.10

204

—
v
L

-
o
!

Evaporation Time

/\
VA,

T T T T T T T T
1.0 1.5 2.0 2.5 3.0 35 4.0 4.5
Maximum Velocity

FIG. 9: Evaporation time vs. velocity distribution
keeping a baseline minimum velocity

Evaporation Time vs. Initial Velocity Distribution

—— Variation in Velocity: +0.90

—
~
wn

—
bl
=}

Evaporation Time

= =

5 ~ o [
w o w

! L L |

/

N
/
\
/

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
Base Velocity

FIG. 10: Evaporation time vs. velocity distribution
varying minimum velocity with maximum velocity

Initial Parameters for Varying Mass
Grid Size 10x10x10
Particles 5
Mass Range 1 <m <1
Position Range 3 <p <7
Initial Velocity Range| .1 <v <1

Similar to the procedure for the velocity, we first kept
the initial minimum mass the same varied the maximum
mass by increments of m = 1 until the mass reached new
maximum of m = 20. For each iteration we recorded the
mean and standard deviation of five evaporation time
data points, and plot the results in Figure 11.

We then varied the initial minimum mass along with
the initial maximum mass by increments of m = 1 until
the maximum mass reached m = 20.0 once again. These
results are plotted in Figure 12.

Evaporation Time vs. Initial Mass Distribution

—— Base Mass: 0.10

304

Evaporation Time
N N
o w

L

-
v
s

A\
\
\\\/\A/\/_ \/

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Mass

104

FIG. 11: Evaporation time vs. mass distribution
keeping a baseline minimum mass

Evaporation Time vs. Initial Mass Distribution

—— Variation in Mass: +0.90
40 4

354

o R
AN

20 / \/

1514

Evaporation Time

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Base Mass

FIG. 12: Evaporation time vs. mass distribution
varying minimum mass with maximum mass

V. DISCUSSION

Based on the nature of the Maxwell-Boltzmann dis-
tribution, which we anticipate to be the only physical
force of motivation for globular cluster evaporation in our
simulation, we expect the evaporation time to decrease
with an increase in the average velocity of the velocity
distribution. The Maxwell-Boltzmann distribution is of-
ten used to characterize ideal gases at various tempera-
tures, and one property of the distribution is that the tail
‘grows’ with the temperature. Since temperature can be
expressed as the average kinetic energy of the particles
in the gaseous system, this property indicates that as the
average kinetic energy of the system increases, the distri-
bution skews to allow for more particles to exist with a
kinetic energy much larger than the mean. With regard
to our simulation, this forms the basis for our expectation
that an increase in the average kinetic energy of our sys-
tem results in a decrease in the average evaporation time.
Looking at Figures 9 and 10, this relationship is indeed
observed. In our analysis, we explored two different types
of variation in the velocity distribution. In the first situ-
ation, where the velocity is kept at a minimum baseline

level, the average kinetic energy increases at a slower rate
than the second situation, where the minimum velocity
increases as well. Therefore, we expect the decrease in
evaporation time to be more gradual in the first case.
This phenomenon was not clearly observed. Referring
to the figures in question, the evaporation times trend
downwards at approximately the same rate. However,
it does appear that in Figure 10 the velocity reaches a
lower value at an earlier point in time, when the error
bars converge.

The reason the error bars are large at the start of each
velocity plot is because given the size of the grid and the
number of particles, a smaller particle velocity allows for
more interaction between the orbiting bodies, thus com-
plicating the rate of evaporation, and creating a larger
range of evaporation time values. For this reason as well,
the error bars are larger throughout Figure 9 because of
the smaller baseline velocity. It is difficult to gauge the
escape velocity of the system based on the two setups
for analysis. If we consider the escape velocity to be the
average velocity beyond which the evaporation time does
not change (i.e. the particles are traveling too fast for
interactions with one other to matter), because we only
record the time when all the particles have left the sys-
tem, we are limited in each setup in different ways. In the
first setup, where the minimum velocity is retained, we
are limited by the minimum velocity, in that the slowest
moving particle will be the last one to leave the system,
and thus set the evaporation time. In the second system,
we are often limited by the fact that the minimum ve-
locity is so high, the cluster may travel together off the
space of the grid before the particles fully diverge in the
sense of a regular interaction. A future implementation
of this analysis could systematically place particles with
higher velocities in a cloud of low velocity particles, to
more accurately test the limits of the escape velocity.

In examining Figures 11 and 12, we see no definitive
correlations between the evaporation time and the av-
erage mass. One would expect that with more mass,
there is more inwardly directed gravitational force, and
thus the particles are less likely to diverge from one an-
other. Interestingly, it appears that this is not neces-
sarily the case. One explanation could be that greater
average masses produce larger gravitational force on one
another, and the two cancel out to maintain an equi-
librium whereby masses, on average, are perturbed an
equal amount by one another. Once again, we are lim-

ited in examining the full scope of the effect of mass on
stellar ejecta in the way that we defined the evaporation
time, especially within the first setup. In the first setup,
where a minimum mass baseline is maintained, it is quite
likely that the larger masses exert large forces on smaller
masses, propelling them out of the globular cluster more
often than in the second setup, where the minimum mass
increases with the maximum mass. The large error bars
in each plot suggest that the distributions of stars have
more time to interact with one another. If permitted
more time, it would have been fruitful to examine vari-
eties of mass distributions with a larger baseline velocity,
to see if they ”stick together better” at larger average
mass.

VI. CONCLUSION

In conclusion, this simulation was successful in that
it expressed the expected relationship between evapora-
tion time and various particle velocity distributions. The
simulation did not find a correlation between the evapo-
ration time and the mass distribution of the stars, which
may be due to limited statistics, although possible al-
ternative explanations were provided. Most of all, the
main triumph of this simulation was the successful im-
plementation of the Particle-Mesh algorithm to produce
real-valued potential distributions, and fields of gravity
that point where they are expected to. One major pit-
fall of the simulation was that the Particle-Mesh algo-
rithm is best used in large scale simulations where long
range forces are the primary dictator of particle motion.
Though we were able to animate the simulation in real
time for 20 particles in a grid size of 50x50x50, this was
not feasible in collecting evaporation time data, as the
simulation had to be run over and over and over again
to accumulate statistics. Apart from the further analysis
suggested in the discussion section, this simulation could
have been improved in two other ways. First, short range
forces could have been taken into account using the PP
method on small scale interactions, which would turn the
Particle-Mesh algorithm into a superior Particle-Particle
Particle-Mesh (P3M) algorithm. Furthermore, a CIC
mass density assignment operation could have improved
the resolution of the simulation over the NG approach.
Finally, we could have incorporated proper units into our
parameters to get a better physical understanding of how
our bodies orbit one another.

REFERENCES

[1] Benacquista, M. J. ”Relativistic Binaries in Globular Clus-
ters.” Living Reviews in Relativity 16.4 (2013): 47-59.

[2] Thijssen, J. M. Computational Physics. Cambridge: Cam-
bridge UP, 2000. 220-27.

[3] Perets, Hagai B., and Ladislav Subr. ”The Properties
of Dynamically Ejected Runaway and Hyper-Runaway
Stars.” The Astrophysical Journal 751.133 (2012): 1-6.

[4] Bagla, J. S. ”Cosmological N Body Simulation: Tech-
niques, Scope and Status.” Current Science 88.7 (2005):
1088-100.

49

APPENDIX: CODE

Gravitational N Body Simulation using P3M Method

Created by Nick Stern on 4/24/2017

import numpy as np

from numpy import matlib

import matplotlib

matplotlib.use ('TkAgg’)

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
import random as r

import pandas as pd

import matplotlib.animation as am

;| import time

Initialize 3D Grid

s| class grid:

def __init__(self,l,n):
x, v, z are the N x N x N dimensions you want your grid to be
n is the number of cells you want in a given direction

self.l1 =1

self.cell_width = np.float(l)/n

self.gs =1 / (2.xn)

self .x, self.y, self.z = np.meshgrid(np.linspace (0,1 ,n)+self.gs,np.linspace(0,l,n)+
self.gs, np.linspace (0,1 ,n)+self.gs)

self.n =n

self.density = np.zeros((n,n,n))

def plot(self):
fig = plt.figure()
ax = fig.add_subplot (111, projection=’3d")
ax.scatter (self.x,self.y,self.z,color="r" s=1)
ax.set_xlabel (’x7)
ax.set_ylabel (’y’)
ax.set_zlabel (7z7)
plt.title(’Lattice Points’)
def reset_density (self ,n):
self.density = np.zeros((n,n,n))

class particle:
def __init__(self ,n,mrange,vrange, prange):
n particles w/ random masses, velocities , positions in mrange, vrange, and prange
mrange, vrange, and prange are all tuples

self .n = n
self .m = np.zeros(n)
self .vx, self.vy, self.vz = np.zeros(n), np.zeros(n), np.zeros(n)

self .px, self.py, self.pz = np.zeros(n), np.zeros(n), np.zeros(n)
for i in range(n):

self .m[i] = r.uniform (min(mrange) ,max(mrange))

self .vx[i] = r.uniform (min(vrange) ,max(vrange)) * r.choice([—1, 1])
self .vy[i] = r.uniform (min(vrange) ,max(vrange)) #* r.choice([—-1, 1])
self .vz[i] = r.uniform (min(vrange) ,max(vrange)) % r.choice([—1, 1])
self .px[i] = r.uniform (min(prange) ,max(prange))

self .py[i] = r.uniform (min(prange) ,max(prange))

self .pz[i] = r.uniform (min(prange) ,max(prange))

make first particle a black hole in center of grid

self .m[0] = 1000

self .px[0] = ((max(prange)—min(prange))/2)+min(prange)
self .py[0] = ((max(prange)—min(prange))/2)+min(prange)
self .pz[0] = ((max(prange)—min(prange))/2)+min(prange)

self.vy[0O
self.vz[0

F I FFHFHFIE

]

] (

] (
self .vx[0] =0

] 0

] 0

63 def reset_pos(self, pos):

self .px = pos[0:self.n, 0]
65 self .py = pos[0:self.n, 1]
self .pz = pos[0:self.n, 2]

69 def randv (self ,vrange):
randomize initial velocities without changing other properties of the particle
distribution

71 for i in range(self.n):
self .vx[i] = r.uniform (min(vrange), max(vrange)) % r.choice([—1, 1])
73 self .vy[i] = r.uniform (min(vrange), max(vrange)) % r.choice([—1, 1])
self .vz[i] = r.uniform (min(vrange), max(vrange)) * r.choice([—1, 1])

def randm(self ,mrange):
77 # randomize initial masses without changing other properties of the particle
distribution
for i in range(self.n):
79 self m[i] = r.uniform (min(mrange), max(mrange))

def plot(self, grid):
83
fig = plt.figure()

85 ax = fig.add_subplot (111, projection="3d")

ax.scatter (self.px, self.py, self.pz, color="b’,s = 10xself .m)
87 ax.set_xlabel (’x7)

ax.set_ylabel (’y’)

89 ax.set_zlabel (7z7)

ax.set_x1im3d (0, grid. 1)

91 ax.set_ylim3d (0,grid. 1)

ax.set_zlim3d (0, grid. 1)

93 plt.title(’Particles’)

plt .show ()

A~~~

def nearest(self ,grid): # unfinished
97 # returns nearest grid point
nrst, idx = np.zeros(self.n),np.zeros((self.n,3))
99 for i in range(self.n):
dist = np.sqrt ((grid.x—self .px[i])**2 4+ (grid.y—self.py[i])**2 4+ (grid.z—self.
pali]) #x2)
101 nrst[i] = np.ndarray .min(dist)
temp_idx = np.where(dist = nrst[i])
103 idx[i,:] = np.array ([x.item () for x in temp_idx])

105 return idx

07| def assign_density (grid , particle):

grid.reset_density (grid.n)

109 idx = particle.nearest(grid)

for i in range(particle.n):

11 grid.density [idx[i, 0], idx[i, 1], idx[i, 2]] = particle.m[i]
return grid.density

def leapfrog(lfdiffeq, r0, vO, t, h, G): # vectorized leapfrog
115 777 yector leapfrog method using numpy arrays.

It solves general (r,v) ODEs as:

117 dr[i]/dt = {[i](v), and dv[i]/dt = g[i](r).

User supplied lfdiffeq(id, r, v, t) returns

119 fli](r) if id=0, or g[i](v) if id=1.

It must return a numpy array if i>1 777

121 hh = h/2.0

rl = r0 + hhx1fdiffeq (0, r0, vO, t, G) # 1st: r at h/2 using vO0

123 vl = v0 + hxlfdiffeq (1, r1, v0, t+hh, G) # 2nd: vl using a(r) at h/2
rl = rl + hhxlfdiffeq (0, r0, vl, t+h, G) # 3rd: rl at h using vl

125 return rl, vl

27| def gravity (id, r, v, t, G):

if (id = 0): return v # velocity , dr/dt
120 return G # dv/dt
11| def escaped(grid, particle):
esc = 0
133 for i in range(particle.n):
pos = np.array ([particle.px[i], particle.py[i], particle.pz[i]])
135 testl = np.sum((pos > grid.l).astype(int)) # is one of the coordinates greater than
grid dim
test2 = np.sum((pos < 0).astype(int)) #is one of the coordinates less than 0
137 test = testl + test2 # this will be greater than zero if one of these conditions is
violated
if test > O0:
139 esc +=1

return esc
141

15| def step_pvals(grid , particle ,Fgx,Fgy,Fgz, t, h):

145 # particle —mesh method
idx = particle.nearest(grid)
147 encounter = 0
for i in range(particle.n):
149 # For each particle, test whether there’s a particle within a nearby cell
cell_tolerance = 4 #test whether the index of another particle is within this
number
151 # # subtract row i from each row of idx and sum rows, then test against tolerance

test = np.sum(np.absolute(idx — np.matlib.repmat(idx[i,:],np.shape(idx)[0],1)),
axis=1) < cell_tolerance

153 # if np.sum(test.astype(int)) > 1:
encounter 4= 1
155 # take each component of gravity and divide by particle mass
rx, ry, rz = particle.px[i], particle.py[i],particle.pz[i]
157 vx, vy, vz = particle.vx[i],particle.vy[i], particle.vz[i]
Gx = Fgx[idx[i,0],idx[i,1],idx[i,2]]/(particle.m[i])
159 Gy = Fgy[idx[i,0],idx[i,1],idx[i,2]]/(particle.m[i])
Gz = Fgz[idx[1,0],idx[i,1],idx[i,2]]/(particle.m[i])
161 particle.px[i], particle.vx[i] = leapfrog(gravity, rx, vx, t, h, Gx)
particle.py[i], particle.vy[i] = leapfrog(gravity, ry, vy, t, h, Gy)
163 particle.pz[i], particle.vz[i] = leapfrog(gravity, rz, vz, t, h, Gz)
165 # print (’Particles within cell tolerance: %i’ %encounter)

return particle.px, particle.py, particle.pz, particle.vx, particle.vy, particle.vz
167
def diagnostic(g,p,c,t,h,tmax):

169 for i in range(1):

assign masses to grid density matrix

171 g.density = assign_density (g, p)

Fourier transform the density to find the potential

173 potentialf = ¢ % np. fft.fftn(g.density)

175 # inverse fourier transform this back to find spatial potential
potential = np. fft.ifftn (potentialf)

177 print (potential)

plot the initial spatial potential as a surface plot
179 # create a threshold mask for the potential:

thresh = 2 # minimum potential

181 mask = np.abs(np.real(potential)) <= thresh

189

193

195

197

199

201

203

205

207

219

229

235

N
1

239

gx-mask = np.ma.masked_where (mask, g.x)
gy-mask = np.ma.masked_where (mask, g.y)
gz-mask = np.ma.masked_where (mask, g.z)

fig = plt.figure()

ax = fig.add_subplot (111, projection="3d")

with mask

pl = ax.scatter (gx_mask, gy.mask, gz mask, c=np.real(potential), s=3)
without mask

pl = ax.scatter(g.x, g.y, g.z, c=np.real(potential))
fig.colorbar (pl)

ax.set_xlabel (’x7)
ax.set_ylabel (y’)
ax.set_zlabel (’z7)

ax.set_zlabel ("Potential ’)
plt.title (’Potential @ t = %.2f" %t)
ax.set_x1im3d (0, g.1)
ax.set_ylim3d (0, g.1)
ax.set_zlim3d (0, g.1)

calculate the gravity vector from the potential field

Fg = np.gradient (np.real (potential)) # taking the real values b/c I still
imaginary when inverse Fourier Transforming
Fgy, Fgx, Fgz = Fg[0]x—1, Fg[l]*—1, Fg[2]x—1

add quiver plot on top of potential:

ax = fig.gca(projection="3d")

scalar = .2 #scalar multiple to reign in lengths of arrows

ax.quiver (gx_mask, gy_-mask, gz mask, Fgxxscalar, Fgyxscalar, Fgzxscalar)

P.PX, P.PY, P.P%, P.VX, p.vy, p.vz = step.-pvals(g, p, Fgx, Fgy, Fgz, t, h)
positions = np.zeros((p.n, 3))

positions[:, 0] = p.px

positions[:, 1] = p.py

positions[:, 2] = p.pz

t +=h
return potential

def initialize ():

initialize grid and particles
g = grid(11,11)

= grid (11, 11)

.plot ()

#

09

#

09

,[.01,1],[(3,7])
5],[.01,1],[3,7])

p = particle(5, [.1,5]
p = particle(5, [.1,
p.plot(g)

ss|# Initialize Fourier Values

dx = g.cell_width
n=g.l / g.cell_.width # does this have to be an integer?
Initialize k

m = np.linspace(—1, 1, n)

m = np.roll (m,np. ceil (len(m) /2.).astype(int))
Initialize k, the wave vector

k = np.zeros((g.n, g.n, g.n))

for i in range(g.n):

get

10

249

261

263

269

289

293

297

299

301

303

11

for j in range(g.n):
for x in range(g.n):
k[i,j,x] = (np.pixm[i]/g.1)*x2 + (np.pixm[j]/g.1)*%2 4+ (np.pixm[x]/g.1)
xx2 #this is k™2
k[i,j,x] = (2+«np.pixi/g.1)*x2 + (2*xnp.pixj/g.1)*+x2 + (2*np.pi*xx/g.1)*=*2
k[i, j, x] (np.pi * m[i] / dx) #x 2 + (np.pi * m[j] / dx) *x 2 + (np.pi =
m[x] / dx) =% 2

¢ = —4.xnp.pi/(k)
c[0, 0, 0] =0

5|# Initialize time and time step

t, h, tmax = 0.0, 0.05, 100

positions = np.zeros((p.n, 3)) # initialize so that each iteration of particle
positions is recorded

positions [0:p.n, 0] = p.px

positions [0:p.n, 1] = p.py
positions [0:p.n, 2] = p.pz

return g,p,c,t,h,tmax, positions

data generator function:

5| def data_gen(g,p,c,t,h,tmax, positions):

tc =0

while t < tmax:

assign masses to grid density matrix
g.density = assign_density(g,p)

Fourier transform the density to find the potential
potentialf = cxnp. fft . {ftn (g.density)

inverse fourier transform this back to
potential = np. fft.ifftn (potentialf)

calculate the gravity vector from the potential field

Fg = np.gradient (potential) # taking the real values b/c I still get imaginary when
inverse Fourier Transforming

Fgy, Fgx, Fgz = Fg[0]x—1, Fg[l]x—1, Fg[2]*x—1

P.PX,pP.PY,P.PZ,pP.VX,p.Vy,p.vz = step-pvals(g,p,Fgx,Fgy,Fgz,t,h)

esc = escaped(g,p)

if esc > 1:

print (’escaped particles = %i’ %esc)

positions [:,0] = p.px
positions [:,1] = p.py
positions [:,2] =

|
o
e}
N

t +=h
tc 4= 1
yield positions ,tc,potential |t

def animate(data, h):
positions , tc, potential ,t = data
diagnostic iterative plots
if t%.5 < .001:
print (potential)
plot the potential
fig = plt.figure ()
ax = fig.add_subplot (111, projection="3d")
ax.scatter (g.x,g.y,np.real(potential))
pl = ax.scatter(g.x, g.y, g.z, c=potential, s = .5)
fig.colorbar (pl)

FHFFHF

305

307

309

323

333

339

341

349

359

361

363

365

def

def

12

ax.set_xlabel ('x’

)
ax.set_ylabel ('y’)
ax.set_zlabel (7z")

ax.set_zlabel ("Potential)

plt.title (’Potential @ t = %.2f" %t)
ax.set_x1im3d (0, g.1)

ax.set_ylim3d (0, g.1)

time = np.zeros (np.shape(positions)[0]) + tc * h
df = pd.DataFrame({”time”: time, ”"x”: positions[:, 0], "y”: positions[:, 1], 7z”:
positions [:, 2]

graph.set_data (df.x, df.y)
graph.set_3d_properties (df.z)

title.set_text (’3D Test, time={} .format(tcxh))
return title , graph

F I FHFFHFHIHE

run(g, p, ¢, t, h, tmax, positions):
while t < tmax:
assign masses to grid density matrix
g.density = assign_density (g, p)
Fourier transform the density to find the potential
potentialf = ¢ % np. fft.fftn(g.density)

inverse fourier transform this back to find spatial potential
potential = np. fft.ifftn (potentialf)

find the gravitational field vectors
Fg = np.gradient (np.real(potential)) # taking the real values b/c there is complex
noise

ng, ng7 ng = Fg[o] * —1, Fg[l] * —1, Fg[Q] * —1

iterate to find the new positions

p.PX, P.PY, P.Pz, P.VX, p.vy, p.vz = step_pvals(g, p, Fgx, Fgy, Fgz, t, h)
positions[:, 0] = p.px

positions[:, 1] = p.py

positions [:, 2] = p.pz

esc_time = 0
esc.num = escaped(g,p)
if esccnum = p.n:
esc_time = t
t = tmax
else:
t +=h

return esc_.num, esc_time

gather_velocity_data (vmin,vmax, vrandscale , vstep):

start = time.time ()

g, p, ¢, t, h, tmax, positions = initialize ()

pl = particle(5, [.1,5],[1,1.1],[3,7])

pl.px = np.copy(p.px) # initial particle values were linking with iteration

pl.py = np.copy(p.py) # initial particle values were linking with iteration
pl.pz = np.copy(p.pz) # initial particle values were linking with iteration
masses = p.m # initial particle values were linking with iteration

create list of minimums

a = np.arange (vmin, (vmax — vrandscale) + vstep, vstep)

create list of maximums:

b = np.arange(vmin + vrandscale, vmax + vstep, vstep)

a = np.ones(len(b))*vmin # keep a constant at vmin

create zippered list

cl = zip(a, b)

cl = np.array(cl) #list of tuples that represent velocity ranges
datapoints = 5

367

369

379

389

391

393

395

397

399

401

403

407

411

419

esc.num, esc-time = np.zeros((len(a)—1,datapoints)), np.zeros((len(a)—1,datapoints))
for i in range(len(a)-1):
for j in range(datapoints):
p.reset_pos(init_positions)
p = particle(5, [.1,5],[1,1.1],[3,7])
p-m = masses # initial particle values were linking with iteration
p.px = np.copy(pl.px) # initial particle values were linking with iteration
p.py = np.copy(pl.py) # initial particle values were linking with iteration
p.pz = np.copy(pl.pz) # initial particle values were linking with iteration
p.randv ([cl[i,0], cl1[i,1]]) # set uniform random velocity dist between [vmin,

vimax |
esccnum [i,j], esc_time[i,j] = run(g,p,c,t,h,tmax, positions) # run w/ velocity
dist j times to record evap times
avg_esc.num, avg_esc_time = np.mean(esc_num,1l), np.mean(esc_time ,1)
std_esc.num , std_esc_time = np.std(esccnum,l), np.std(esc_time 1)

return avg_esc.num, std_esc.num, avg_esc_time, std_esc_time

def gather_mass_data (mmin,mmax, mrandscale , mstep):
start = time.time ()
g, p, ¢, t, h, tmax, positions = initialize ()
pl = particle(5, [.1,5],[.1,1],[3,7])
pl.px = np.copy(p.px) # initial particle values were linking with iteration
pl.py = np.copy(p.py) # initial particle values were linking with iteration
pl.pz = np.copy(p.pz) # initial particle values were linking with iteration
pl.vx = np.copy(p.vx) # initial particle values were linking with iteration
pl.vy = np.copy(p.vy) # initial particle values were linking with iteration
pl.vz = np.copy(p.vz) # initial particle values were linking with iteration
create list of minimums
a = np.arange (mmin, (mmax — mrandscale) 4+ mstep, mstep)
create list of maximums:
b = np.arange (mmin + mrandscale, mmax + mstep, mstep)
a = np.ones(len(b))*mmin # keep a constant at mmin
create zippered list
cl = zip(a, b)
cl = np.array(cl) #list of tuples that represent velocity ranges
datapoints = 5
escnum, esc_time = np.zeros((len(a)—1,datapoints)), np.zeros((len(a)—1,datapoints))
for i in range(len(a)-1):
for j in range(datapoints):
p.reset_pos(init_positions)
p = particle(5, [.1,5],[1,1.1],[3,7])
p.px = np.copy(pl.px) # initial particle values were linking with iteration
p.py = np.copy(pl.py) # initial particle values were linking with iteration
p.pz = np.copy(pl.pz) # initial particle values were linking with iteration
p.vx = np.copy(pl.vx) # initial particle values were linking with iteration
p (
p
p
e

.vy = np.copy(pl.vy) # initial particle values were linking with iteration
.vz = np.copy(pl.vz) # initial particle values were linking with iteration
.randm ([c1[i,0], c1[i,1]]) # set uniform random mass between [mmin, mmax]
sccnum [i,j], esc_.time[i,j] = run(g,p,c,t,h,tmax, positions) # run w/ mass dist

j times to record evap times

avg_esc.num, avg_esc_time = np.mean(escnum,1l), np.mean(esc_time , 1)

std_esc_num , std_esc_time = np.std(esccnum,1), np.std(esc_time 1)

return avg_esc.num, std_esc.num, avg_esc_time, std_esc_time

data_gathering = 1
if data_gathering:

vmin, vmax, vrandscale, vstep = .1, 5, .9 .2

mmin, mmax, mrandscale, mstep = .1, 20, .9, 1

avg_esc.num , std_esc.num, avg_esc_time, std_esc_time = gather_velocity_data (vmin,vmax,
vrandscale , vstep)

avg_esc.numl, std_esc.numl, avg_esc_-timel, std_esc_timel = gather_mass_data (mmin, mmax,

mrandscale , mstep)

plot of evaporation time vs. velocity distributions

13

431

433

441

447

449

459

461

463

465

469

473

7|# esc_num ,

14

plt.figure ()

plt.title (’Evaporation Time vs. Initial Velocity Distribution’)

plt.plot (np.arange (vmin,vmax—vrandscale ,vstep), avg_esc_time)

plt.errorbar (np.arange (vmin,vmax—vrandscale ,vstep) ,avg_esc_time, yerr=std_esc_time ,fmt=

’O’)

plt.plot (np.arange (vmint+vrandscale ,vmax, vstep), avg_esc_time)

plt.errorbar (np.arange (vmintvrandscale ,vmax, vstep) ,avg_esc_time ,
fmt="0")

plt.xlabel (’Base Velocity’)

plt.xlabel (’Maximum Velocity ’)

plt.ylabel (’Evaporation Time’)

plt.legend ([’Variation in Velocity: +%.2f" %vrandscale])

plt.legend ([’Base Velocity: %.2f’ % vmin])

yerr=std_esc_time ,

plot of evaporation time vs. mass distributions

plt.figure ()

plt.title (’Evaporation Time vs. Initial Mass Distribution)

plt.plot (np.arange (mmin,mmax-mrandscale ,mstep), avg_esc_timel)

plt.errorbar (np.arange (mmin, mmax-mrandscale ,mstep) ,avg_esc_timel , yerr=std_esc_timel ,

fmt="0")

plt.plot (np.arange (mmintmrandscale ,mmax, mstep), avg_esc_timel)

plt.errorbar (np.arange (mmintmrandscale ,mmax, mstep) ,avg_esc_timel ,
fmt="0")

plt.xlabel (’Base Mass’)

plt.xlabel (’Maximum Mass ")

plt.ylabel (’Evaporation Time’)

plt.legend ([’ Variation in Mass: +%.2f’ %mrandscale])

plt.legend ([’ Base Mass: %.2f’ % mmin])

s|# Initialize Values

g,p,c,t,h,tmax, positions = initialize ()
esc_time = run(g,p,c,t,h,tmax)
potential = diagnostic(g,p,c,t,h,tmax)

Animate

an = 0

if an:
time = np.zeros(p.n)
df = pd.DataFrame ({” time” :
positions [:,2]})

” 0

time ,7x Vy”

positions [:,0], "y

” 0

positions [:,1], 7z

fig = plt.figure()
ax = fig.add_subplot (111, projection="3d")
ax.set_xlabel (’x7)

ax.set_ylabel (’y’)

ax.set_zlabel (7z7)

ax.set_x1im3d (0,g.1)

ax.set_ylim3d (0,g.1)

ax.set_zlim3d (0,g.1)

title = ax.set_title (’Simulation’)

data=df[df[time ']|==0]
graph, = ax.plot(data.x, data.y, data.z,

29

linestyle= marker="0")

ani = am.FuncAnimation(fig , animate, data_gen(g,p,c,t,h,tmax, positions), fargs= (h,),
interval=100, save_count=50, blit=True)

yerr=std_esc_timel ,

